一、基本信息
陈守文,博士,二级教授,博士生导师
办公电话:027-88663882-8046
电子邮件:chenshouwen(at)hubu.edu.cn
社会兼职:湖北省环境微生物工程技术研究中心主任,必赢唯一官方网站绿康生物工程研究所所长;必赢唯一官方网站科学研究专门委员会主任;中国农业生物技术学会第五届理事会理事,中国农业生物技术学会微生物技术分会常务理事,湖北省合成生物学会常务理事,湖北省生物工程学会理事,湖北省遗传学会理事等
荣誉称号:“楚天园丁奖”(2022),“庆祝中华人民共和国成立70周年”纪念章获得者(2019),湖北省先进工作者(2018),国务院政府特殊津贴获得者(2016),武汉3551光谷人才(2016),国家百千万人才工程(2015),国家有突出贡献中青年专家(2015),教育部新世纪优秀人才(2007)
研究领域:芽胞杆菌代谢工程、发酵工程、蛋白高效表达、代谢组学及其产品应用开发
二、教育背景
1995.09–1998.06 无锡轻工业大学发酵工程专业,获工学博士学位
1989.09–1992.06 华中农业大学微生物学专业,获理学硕士学位
1985.09–1989.06 华中师范大学生物学专业,获理学学士学位
三、工作经历
2014.06至今 必赢集团网站,教授
2000.01–2015.03 华中农业大学生命科学技术学院,副教授、教授
2012.01–2012.04 美国俄克拉荷马大学访问学者
2011.04–2012.01 美国德州农工大学访问学者
1992.07–1999.12 华中农业大学食品科技学院,助教、讲师
四、科研项目
1. 转录因子AbrB调控地衣芽胞杆菌抗氧化系统的机制,国家自然科学基金,项目编号:32270059,2023-2026;
2. 工业酶原核高效表达系统全局设计优化与创建,科技部重点研发计划课题,编号2021YFC2100202,202107-202406;
3. 富含1-脱氧野尻霉素的功能性纳豆食品研制,武汉市科技局,2020-2022;
4. 转录因子AbrB调控地衣芽胞杆菌能量代谢机制分析,国家自然科学基金,项目批准号31972849,2020-2023;
5. 国家重点研发计划《高版本模式微生物底盘细胞》子课题:关键功能基因模块重构与优化,(2018YFA0900303),2019-2024;
6. 湖北省环境微生物工程技术研究中心技术创新平台建设,湖北省中央引导地方科技发展专项,2018-2020,2018ZYYD004
7. 废弃生物资源发酵生产聚γ-谷氨酸和乙醇关键技术研究,湖北省技术创新专项重大项目,2018-2020(2018ACA149)
8. 瓜类白粉病高效生防制剂——Iturin A芽孢杆菌水剂的创制与应用,武汉市科技局,编号:2016060101010062,2106-2018
9. 外源和土著有益菌向根表趋化成膜和作用机制研究,编号 2015CB150505,973计划,2015-2019
10. 功能微生物二次发酵畜禽养殖废弃物有机肥技术,湖北省科技支撑计划,项目编号2014BBB009, 2014-2016,
11. 农用酶制剂高效制备技术, “十二五”农村领域国家科技计划课题(农用微生物制剂和酶制剂产品开发前沿共性技术研究),编号2013AA102801-52,2013-2017
12. 聚γ-谷氨酸“从头合成”工程菌株构建及发酵工艺优化,武汉市科技攻关,起止年限:2013-2014,项目编号:2013020602010301
13. 盐胁迫促进地衣芽胞杆菌高效合成聚γ-谷氨酸的代谢机制,国家自然科学基金,项目批准号:31170046,起止年限:2012-2015
14. 新型生物肥料发酵技术和新剂型的研究,湖北省科技攻关,项目编号2010BBB015,起止年限:2010-2011
15. 农用级聚γ-谷氨酸产业化中试,农业科技成果转化资金,2010GB23600662;起止年限:2010-2012
16. “聚γ-谷氨酸肥料增效剂的中试与示范”,子课题, 农业科技成果转化资金,起止年限:2009年6月至2011年6月,项目编号2009GB2G410427
17. 新型高效复合肥产业化开发,湖北省科技攻关重大专项,ZND0017;起止年限:2008年1月至2010年12月
18. 猪链球菌和副猪嗜血杆菌培养条件和培养基的优化,十一五国家支撑计划“细菌性疫苗高密度培养技术研究与示范”子课题,起止年限:2009年7月至2011年12月, 项目编号:2009BADB4B03
19. 新型肥料增效剂——聚γ-谷氨酸的研究与产业开发, (2007年度),教育部新世纪人才支持计划,编号:NCET-07-0341,起止年限:2008年1月至2010年12月
20. 工业酒精酵母的代谢分析,国家863目标导向课题“新型重组工业酿酒酵母的构建及其高强度和高密度酒精发酵”子课题,编号2007AA10Z359;起止年限:2007-2010
21. 聚γ-谷氨酸在水稻栽培中的应用,2007年,十一五国家支撑计划“长江中游(湖北)单双季稻丰产高效技术集成与示范”子课题
22. 苏云金芽胞杆菌杀虫剂微胶囊剂的研究与产业化开发,湖北省科技攻关重大专项(现代生物农药研究与产业化开发)子课题,编号:2006AA205A01;起止年限:2006-2008
23. 新型生物肥料的研究与开发,湖北省科技攻关重点课题,编号:2006AA201B33;起止年限:2006-2007
24. 聚γ-谷氨酸的发酵生产与应用开发的中试研究,湖北省科技攻关课题,编号:2005AA401C13;起止年限:2005-2006
25. 苏云金芽胞杆菌杀虫剂发酵新技术和新剂型,国家“十五”攻关课题;编号:2004BA713B02-02;起止年限:2004-2005
26. 苏云金芽胞杆菌杀虫剂发酵新技术和新剂型,国家“十五”攻关课题;编号:2001BA713B02-02;起止年限:2001-2003
27. 拟除虫菊酯中间体的酶法拆分,湖北省自然基金;编号: 996051;起止年限:1999-2001
五、发表论文和专注
(一)出版译著和专著(第一作者或第一译者)
1. 《微生物生物技术》,2002,科学出版社
2. 《酶工程》,2008(第一版),2015(第二版),科学出版社
(二)代表性SCI/EI论文(通讯作者或并列通讯作者)
1. A smart RBS library and its prediction model for robust and accurate fine-tuning of gene expression in Bacillus species, Metab Eng, 2024, 81, 1-9
2. A new ROS response factor YvmB protects Bacillus licheniformis against oxidative stress under adverse environment. Appl environ microbiol, 2024, e0146823
3. Development of an inosine hyperproducer from Bacillus licheniformis by systems metabolic engineering,J Agric Food Chem, 2023, 71(50), 20210-20221
4. Systematic metabolic engineering of Bacillus licheniformis for hyperproduction of the antioxidant hydroxytyrosol, Green Chem, 2023,25:8718 - 8729
5. A cell-free artificial anabolic pathway for direct conversion of CO2 to ethanol, Green Chem., 2023,25, 9069-9074
6. A novel toolbox for precise regulation of gene expression and metabolic engineering in Bacillus licheniformis, Metab Eng,2023, 78:159-170
7. Metabolic engineering of Bacillus amyloliquefaciens for efficient production of α-glucosidase inhibitor1-deoxynojirimycin, Synth Syst Biotechnol,2023,378-385
8. Enhancing the activity of disulfide-bond-containing proteins via promoting disulfide bond formation in Bacillus licheniformis, Int J Biol Macromolm,2023,233:123468
9. Microbial synthesis of bacitracin: Recent progress, challenges, and prospects, Synth Syst Biotechnol, 2023, 8(2):314-322
10. Promoting cell growth for bio-chemicals production via boosting the synthesis of L/D-alanine and D-alanyl-D-alanine in Bacillus licheniformis, World J Microbiol Biotechnol, 2023,39(5), 115
11. Construct a synthetic Entner-Doudoroff pathway in Bacillus licheniformis for enhancing lichenysin production, World J Microbiol Biotechnol, 2023, 39(7), 168
12. Metabolic Engineering of Bacillus licheniformis for the Bioproduction of Nicotinamide Riboside from Nicotinamide and Glucose, ACS Sustain Chem Engin, 2023,11(16), 6201-6210
13. Assembled denitrifying consortia for efficient nitrate removal under low-COD/N conditions, Chem Eng J, 2023,460,141655
14. Systematic adaptation of Bacillus licheniformis To 2-Phenylethanol Stress, Appl Environ Microbiol, 2023, e0156822
15. Sustainable production of 2-phenylethanol from agro-industrial wastes by metabolically engineered Bacillus licheniformis, LWT-Food Sci Technol, 2023,173, 114414
16. Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers, Appl Biochem Biotechnol,2023,195(3):1752-1769
17. Genetic and metabolic engineering for poly-gamma-glutamic acid production: current progress, challenges, and prospects, world J Microb Biotechnol, 2022, 38:208
18. Engineered multiple translation initiation sites: a novel tool to enhance protein production in Bacillus licheniformis and other industrially relevant bacteria, Nucleic Acids Res, 2022, 50:11979–11990
19. Minimization and optimization of alpha-amylase terminator for heterologous protein production in Bacillus licheniformis, Bioresour Bioprocess, 2022, 9:108
20. Transcription factor DegU-mediated multi-pathway regulation on lichenysin biosynthesis in Bacillus licheniformis, Metab Eng,2022, 74:108–120
21. Enhanced production of iturin A by strengthening fatty acid synthesis modules in Bacillus amyloliquefaciens, Front Bioeng Biotechnol, 2022,10.3389/fbioe.2022.974460
22. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis, Synth Syst Biotechnol, 2022,7(1):567-573,
23. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol,Metabolic Engineering,2022, 70:43-54
24. Rational Engineering of Cofactor Specificity of Glutamate Dehydrogenase for Poly-γ-Glutamic Acid Synthesis in Bacillus licheniformis, Enzyme Microb Technol 2022,155,109979
25. Enhanced aerobic denitrification performance with Bacillus licheniformis via secreting lipopeptide biosurfactant lichenysin, Chem Eng J. 2022,434,134686
26. Metabolic engineering of Bacillus licheniformis for sustainable production of isobutanol, ACS Sustain Chem Eng. 9 (51) :17254-17265
27. Construction and characterization of a gradient strength promoter library for fine-tuned gene expression in Bacillus licheniformis, ACS Synth Biol 2021,10(9), 2331-2339
28. Metabolic engineering of Aspartic acid supply modules for enhanced production of bacitraicn in Bacillus licheniformis, ACS Synth Biol 2021, 10(9): 2243-2251
29. Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid, Appl Biochem Biotechnol. 2021, 193(11), 3540-3552
30. Novel strategy of feeding nitrate for cost-effective production of poly-γ-glutamic acid from crude glycerol by Bacillus licheniformis WX-02, Biochem Eng J, 2021,176,108156
31. Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris, ISME J, 2020,14(11): 2862-2876
32. Efficient production of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source, Appl. Microbiol. Biotechnol. 2020, 2020,104:7507–7520
33. Engineering expression cassette of pgdS for efficient production of poly-γ-glutamic acids with specific molecular weights in Bacillus licheniformis, Front Bioeng Biotechnol, 2020,8:728
34. Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis, Metabolic Engineering Communications, 2020, MEC_e00136
35. Engineering expression cassette of pgdS for efficient production of poly-γ-glutamic acids with specific molecular weights in Bacillus licheniformis, Front Bioeng Biotechnol, 2020,
36. Facilitating protein expression with portable 5’-UTR secondary structures in Bacillus licheniformis, ACS Synth Biol 2020,
37. Construction and application of the dual promoter system for protein efficient production and metabolic pathway enhancement in Bacillus licheniformis, J Biotechnol , 2020, 312:1-10
38. Enhanced bacitracin production by systematically engineering S-adenosylmethionine supply modules in Bacillus licheniformis, Front Bioeng Biotechnol, 2020,
39. Efficient production of pulcherriminic acid in Bacillus licheniformis by multistep metabolic engineering, Appl. Environ Microb , 2020, 03041-19.
40. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis, Appl. Microbiol. Biotechnol. , 2020, 104,1:391–403
41. Enhanced production of iturin A in Bacillus amyloliquefaciens and its effect on suppression of Alternaria alternate, Process Chem 2019,
42. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis, J Ind Microbiot Biot, 2019, 46,12 : 1745-1755
43. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis, Appl. Microbiol. Biotechnol , 2019, 103, 21-22: 8799-8812
44. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA deficient strain of Bacillus licheniformis, Appl. Microbiol. Biotechnol. 2019, 103(120):4789-4799
45. High-level production of short branched-chain fatty acids from waste materials by genetically modified Bacillus licheniformis, Bioresour Biotechnol. 2019, 271:325-331
46. Metabolic engineering of main transcription factors in carbon, nitrogen and phosphorus metabolisms for enhanced production of bacitracin in Bacillus licheniformis, ACS Synth Biol, 2019, 19;8(4):866-875
47. Untargeted metabolomics analysis reveals global acetoin stress response of Bacillus licheniformis, Metabolomics, 2019, doi:10.1007/s11306-019-1492-7
48. 13C-Metabolic Flux Analysis Reveals the Metabolic Flux Redistribution for High-level Production of Poly-γ-Glutamic acid in dlt over-expressed Bacillus licheniformis, Front Microbiol, 2019, fmicb.2019.00105
49. Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid, Appl. Microbiol. Biotechnol. 2019, 103(10), 4003-4015
50. Engineering of Bacillus as the efficient host strain for heterologous protein production: current progress, challenge and prospect,J Appl Microbiol 2019, 126, 1632--1642
51. Enhanced production of Bacitracin by NADPH generation overexpressing glucose-6-phosphate dehydrogenase Zwf in Bacillus licheniformis, Appl Biochem Biotechnol. 2018,187(4), 1502-1514
52. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis, Biotechnol Biofuels,2018, 11:306
53. Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis, Synth Syst Biotechnol , 2018, 3: 235-243
54. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN deficient strain of Bacillus licheniformis, Appl. Microbiol. Biotechnol. 2018, 102(23), 10127-10137
55. Enhanced production of heterologous proteins by Bacillus licheniformis with defective D-alanylation of teichoic acid, World J Microbial Biotechnol, 2018, 9:135
56. Enhanced production of Poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis, Biotechnol Bioeng, 2018,10:2541-2553
57. Regulation of the Synthesis and Secretion of the Iron Chelator Cyclodipeptide Pulcherriminic Acid in Bacillus licheniformis, Appl. Environ Microb. 2018, 84(13) : 00262-18
58. The diversity and biogeography of N2O-reducing microbial communities in forest soils along a temperature gradient, Funct Ecol. 2018, 7:1867-1878
59. Development of an Efficient Genome Editing Toolkit in Bacillus licheniformis Using CRISPR-Cas9 Nickase, Appl. Environ Microb., 2018,84(6):02608-17
60. Rational design and medium optimization for shikimate production in recombinant Bacillus licheniformis strains, Process Biochem. 2018, 66:19-27
61. A novel strategy to improve the γ-PGA production by overexpression of global anaerobic regulator Fnr in B. licheniformis WX-02, Appl. Biochem. Biotechnol. 2018, 4:985-970
62. Acetolactate Synthase from Bacillus licheniformis is an Efficient for Acetoin/Butanediol and L-Valine Biosynthesis, Bioprocess and Biosyst Eng, 2017, 41(1):87-96
63. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2, Res Microbiol, 2017, 168: 515-523
64. Lichenysin production is improved in codY knocked-out Bacillus licheniformis by addition of precursor amino acids, Appl. Microbiol. Biotechnol. 2017, 101:6375-6383
65. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-γ-glutamic acid, Appl. Microbiol. Biotechnol. 2017, 101: 7155–7164
66. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2, Appl. Biochem. Biotechnol. 2017, 183(4), 1323-1335,
67. High-level production of α-amylase by manipulating the expression levels of Alanine racamase in a food-grade expression system in Bacillus licheniformis, Biotechnol. Lett. 2017, 39(9):1389-1394
68. Optimization of inexpensive agricultural byproducts as raw materials for bacitracin production in Bacillus licheniformis DW2, Appl. Biochem. Biotechnol. 2017, 183(4):1146-1157
69. A Novel Strategy to Improve Protein Secretion via Over-expression of Signal Peptide Peptidase SppA in Bacillus licheniformis, Microbial Cell Fact, 2017, 16:70
70. Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: metabolic engineering and fermentation control, Process Biochem, 2017, 57:35-42.
71. Microbial production of Nattokinase: current progress, challenge and prospect, World J Microbiol Biotechnol, 2017,33(5):84.
72. Glutamate dehydrogenase ( RocG ) plays a key role in glutamate synthesis for Poly-γ-glutamic acid production in Bacillus licheniformis WX-02, Enzyme Microb. Technol., 2017,99:9-15
73. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02,Sci. Rep, 2017, 7: 43404
74. Use of B. amyloliquefaciens HZ-12 for high-level production of the blood glucose lowering compound, 1-deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation, Appl. Biochem. Biotechnol., 2017,181:1108–1122
75. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol, Biotechnol. Biofeul, 2016, 9:117
76. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco,Applied Soil Ecology, 2016,103:1-12 ,
77. Enhancement of poly-γ-glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02, J. Chem. Technol. Biotechnol 2016, 91:2399 -2403
78. High-level Expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase, J. Appl Microbiol, 2016, 121:704–712
79. Enhancement of L-valine production in Bacillus licheniformis by blocking three br anched pathways, Biotechnol. Lett. 2015, 37: 1243-1248
80. Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02, FEBS Lett, 2015, 589:2372-2381.
81. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization, J Ind. Microbiol. Biotechnol., 2015, 42:287-295,
82. A new strategy for enhancement of poly-γ-glutamic acid by multiple physicochemical stresses in Bacillus licheniformis, J. Chem. Technol. Biotechnol. 2015, 90:709-713
83. Poly-γ-glutamic acid modified magnetic nanoparticles for fast solid phase extraction of trace amounts of Cu (II) and Pb (II), Analytical Methods, 2014, 196:9800–9806
84. Decreased Tobacco-specific Nitrosamines by Microbial Treatment with Bacillus amyloliquefaciens DA9 during Air-curing Process of Burley Tobacco, J. Agri. Food Chem., 2014,62:12701–12706
85. Deletion of meso-2,3-butanediol Dehydrogenase Gene budC for Enhanced D-2, 3- butanediol Production in Bacillus licheniformis, Biotechnol. Biofeul, 2014,7:16
86. Physiological and Metabolic Analysis of Nitrate Reduction on Poly-gamma-Glutamic Acid Synthesis in Bacillus licheniformis WX-02, Arch Microb. 2014, 196:791-799.
87. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin gene cluster, Appl. Microbiol. Biotechnol. 2014,98:8895-8903.
88. Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02, J. Chem. Technol. Biotechnol 2014, 89:1825-1832
89. Sample preparation for the metabolomics investigation of poly-gamma-glutamate-producing Bacillus licheniformis by GC-MS, J Microbiol Method, 2013, 94:61-67
90. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model, Chemosphere, 2013,91:442-447
91. Genome Sequence of Bacillus licheniformis WX-02, J. Bacteriol. 2012, 194:3561-3562
92. Co-producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10, World J Microbiol Biotechnol, 2012, 28:985-991
93. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid. Biotechnol Lett, 2011. 33(9):1837-1840
94. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09, Process Biochem., 2011,46:390-394
95. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid, Appl. Biochem. Biotechnol., 2010, 160: 1332-1340
96. Efficient screening and breeding of Bacillus thuringiensis subsp. kurstaki for high toxicity against Spodoptera exigua and Heliothis armigera, J Ind. Microbiol. Biotechnol., 2009, 36:815-820.
97. Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp. darmstadiensis 032 with an improved pH-control glucose feeding strategy, Process Biochem., 2007, 42:52-56.
98. Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048, Process Biochem., 2005, 40:3075-3081.
六、授权中国发明专利(第一发明人)
1. 聚-γ-谷氨酸产生菌及生产聚-γ-谷氨酸的方法,ZL 03118908.3。
2. 聚-γ-谷氨酸作为肥料吸收促进剂在农业种植中的应用,ZL 200610018395.3。
3. 高产Zwittermincin A和晶体蛋白的高毒力苏云金芽胞杆菌突变株D1-23及应用,ZL 200610124933.7。
4. 一种用植物饼粕为原料生产乳酸链球菌素的工艺,ZL 200610019565.X。
5. 聚-γ-谷氨酸增效肥料,ZL 200710052667.6。
6. 一种乳链菌肽基因工程菌MELgad的构建方法, ZL 200710052388.x。
7. 聚-γ-谷氨酸在白肋烟大田生产中的应用,ZL200810046777.6
8. 一种地衣芽胞杆菌菌株及用途和用其生产聚-γ-谷氨酸的方法, ZL 200810055068.4
9. 利用环境压力提高芽胞杆菌发酵聚-γ-谷氨酸产量的方法, ZL 200910272770.0
10. 高效解磷的丁酸梭菌A5-4及应用,ZL 201010153419.2.
11. 一种生产多功能生物有机肥的方法及其应用,ZL 201110125278.8
12. 紫云英根瘤菌高密度发酵工艺,ZL 201110047474.8
13. 解磷恶臭假单胞菌L13及其发酵工艺,ZL 201110047420.1
14. 一株降低烤烟烟叶亚硝胺的恶臭假单胞菌T2-2及用途,ZL 201110090798.X
15. 一种高地芽孢杆菌及其在烤烟上部烟叶人工陈化中的应用,ZL 201110057928X
16. γ-聚谷氨酸或其盐作为添加剂在乳制品中的应用, ZL 200910272421.9。
17. 一种戊糖片球菌高密度发酵培养基及发酵方法,ZL 201210233896.9
18. 一种复合微生物肥料及其制备方法,ZL 201210105105.4
19. 一种烟碱降解菌及其应用,ZL201310616712
20. 一种携带丝氨酸乙酰转移酶基因的地衣芽孢杆菌菌株及其构建方法与应用,ZL 201410063546
21. 一种操纵子bacABC拷贝数倍增和敲除recA基因的地衣芽孢杆菌及其构建方法, ZL 2014104808281
22. 聚γ-谷氨酸作为农药粘附剂的应用,ZL 201510893337.4
23. 一株产纳豆激酶的地衣芽胞杆菌工程菌和用该菌生产纳豆激酶的方法,ZL 201310562366.3
24. 一种粉状毕赤酵母高密度发酵工艺,ZL2013105143191
25. 地衣芽胞杆菌表达宿主,ZL 201310562150.7
26. 一种解钾微生物及其在作物种植中的应用,ZL 201510729377.5
27. 一株高产拮抗烟草青枯病活性物质的内生解淀粉芽胞杆菌, ZL 201510698909.3
28. 一种有机废弃物处理的耐高温腐熟菌剂及其应用方法,ZL 201510852975.1
29. 一种提高芽孢杆菌生物量的基因工程改造方法,ZL 201610821676.6
30. 一种用于有机废弃物处理的脱臭菌剂及其应用方法, ZL 201510698940.7
31. 强化YvbW表达的地衣芽胞杆菌在杆菌肽生产中的应用,ZL 201810246295.9
32. 敲除malR的地衣芽胞杆菌菌株在杆菌肽生产中的应用,ZL 201810898060.8
33. 一株可以高产聚γ-谷氨酸的地衣芽胞杆菌工程菌,ZL 2016110436073
34. 一株可以高效分泌纳豆激酶的地衣芽孢杆菌工程菌,ZL 201410417443.0
35. 一种降低烟草特有亚硝酸胺的解淀粉芽胞杆菌DA9及其应用,ZL 201410548352.0
36. 一种基于核糖体结合位点改造的启动子优化方法,ZL 201710062695.X
37. 4-氨基丁酸氨基转移酶在提高伊枯草菌素A发酵产量中的应用,ZL 201910685428.7
38. 一种提高地衣芽胞杆菌外源蛋白分泌水平的方法, ZL 201710052525.3
39. 苯丙酮酸脱羧酶突变体M538A在生物发酵生产苯乙醇中的应用, ZL 201910688005.0
40. 地衣芽胞杆菌谷氨酸脱氢酶突变体S277W在聚γ-谷氨酸合成中的应用,ZL 201911115629
41. 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用,ZL 2019112360477
42. 一种芽孢杆菌高产普切明的发酵工艺,ZL 201610753883.2
43. 地衣芽孢杆菌DW2△bcaP在杆菌肽生产中的应用,ZL 201810331865.4
44. 通过敲除地衣芽胞杆菌亮氨酸应答蛋白基因lrpC提高杆菌肽产量的方法,ZL 201810333617.3
45. 通过敲除ccpN基因构建地衣芽孢杆菌的方法及菌株及其应用,ZL 201810333598.4
46. 强化YugT表达的地衣芽胞杆菌DW2-yugT的应用,ZL201810897429.3
47. 一种高产杆菌肽的地衣芽胞杆菌菌株和制备方法及其应用,ZL 201810012511.3
48. 一种通过过表达phoP基因高产聚γ-谷氨酸的芽胞杆菌的制备方法及应用,ZL 201810413939.9
49. 敲除解淀粉芽胞杆菌nanR基因在提高1-脱氧野尻霉素产量中的应用,ZL 201911123113.X
50. 一种高产聚γ-谷氨酸的地衣芽胞杆菌的制备方法及应用,ZL201810410909.2
51. 高产聚γ-谷氨酸的工程菌及其构建方法与应用,ZL201810426631.8
52. 一种高效代谢甘油的芽胞杆菌的制备和应用,ZL201810420776.7
53. 去饱和酶Des在提高芽胞杆菌聚γ-谷氨酸产量中的应用,ZL 202010803222.2
54. 鸟氨酸环己烷酶在提高解淀粉芽胞杆菌生产伊枯草菌素A产量中的应用, ZL 201910685439.5
55. 产聚γ-谷氨酸的微生物及其构建方法与应用,ZL 201810426359.3
56. 适用于芽胞杆菌的透明颤菌血红蛋白表达框及应用,ZL 202010417161.6
57. 适用于地衣芽胞杆菌的启动子及其在高效表达目产物中的应用,ZL 202010829306.3
58. malR-knockout Bacillus licheniformis strain, construction method and use,US 11,111,516
59. 缺失亮氨酸脱氢酶基因的地衣芽胞杆菌在异源蛋白生产中的应用,ZL 2019112957350
60. 苯丙酮酸脱羧酶突变体F542W在生物发酵生产苯乙醇中的应用, ZL 201910688020.5
61. 强化表达yvbW基因在提高解淀粉芽胞杆菌吲哚乙酸产量中的应用,ZL 202011237251.3
62. 强化ppc表达的地衣芽胞杆菌及制备方法和应用,ZL 2020101243877
63. 适用于解淀粉芽孢杆菌发酵高产伊枯草菌素A的培养基和应用,ZL 2020109513291
64. 梯度调控芽胞杆菌启动子启动效率的序列组合及应用,ZL 2020111537186
65. 用于产杆菌肽的外源引入edd基因地衣芽孢杆菌及应用,ZL202011394801.2
66. 一种提高芽胞杆菌伊枯草菌素产量的方法,ZL 201810396813.5
67. 芽胞杆菌rex基因在提高聚γ-谷氨酸产量中的应用, ZL 201910685440.8
68. 一种提高芽胞杆菌甘油代谢增加聚γ-谷氨酸产量的方法,ZL 201810396812.0
69. 二氢硫辛酸脱氢酶突变体P213R及其在地衣芽胞杆菌的聚γ-谷氨酸合成中的应用,ZL 2019112360566
70. 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用,ZL 202210498491.1
71. 糖基转移酶突变体及其在发酵生产芳香醇糖苷中的应用,ZL 2022104903859
72. 一种高效合成羟基酪醇的地衣芽胞杆菌、构建方法及应用,ZL 2022105951703
73. 来自于玫瑰的糖基转移酶RrUGT3在生物合成天麻素中的应用,ZL 2022104098037
74. 一种含有苯丙酮酸脱羧酶突变体的全细胞催化剂及其在生产苯乙醇中的应用,ZL 2019107056994
75. 适用于地衣芽孢杆菌的简短终止子及其在高效表达目的产物中的应用,ZL202111174896.1
76. 适用于地衣芽胞杆菌表达的碱性蛋白酶基因序列及应用,ZL202210471439.7(2023)
77. 采用B. licheniformis促进P.stutzeri好氧反硝化效率的方法,ZL 202110985626.2
78. 几丁质酶突变体及应用,ZL2022104811490
79. 含有前肽突变体的碱性蛋白酶及应用,ZL 202210604781.X
80. 适用于弗氏链霉菌的透明颤菌血红蛋白表达框及其应用,ZL 2022100804750
81. 一种基于核心区二级结构改造提高启动子活性的方法和应用,ZL 2022104731763
七、获奖
1. 微生物农药发酵新技术新工艺及重要产品规模应用,国家科学技术进步奖二等奖,2006-J-201-2-14-R02,2006年,朱昌雄,陈守文,宋渊,于毅,关雄,蒋细良,刘红彦,杨自文,朴春树,李季伦
2. 聚γ-谷氨酸发酵生产关键技术及农业应用,湖北省科技发明一等奖,2014,陈守文,喻子牛,王昌军,张似松,汤三洲,李俊辉
3. 高效地衣芽胞杆菌细胞工厂平台创建及产业化应用,湖北省科技发明一等奖,2023,陈守文,路福平,蔡冬波,李由然,李俊辉,王兴吉
八、招贤纳士
本实验室长期招聘研究生、博士、博士后和科研工作人员,待遇从优,欢迎加盟。了解更多详情,请登录微生物工程实验室主页,网址:http://microbeng.hubu.edu.cn/